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PREFACE

In 1929, Dirac famously proclaimed that

The fundamental laws necessary for the mathematical treatment of a large part of
physics and the whole of chemistry (emphasis added) are thus completely known, and
the diffculty lies only in the fact that application of these laws leads to equations that
are too complex to be solved.1

This book is a testament to just how diffcult it is to adequately account for
the properties and reactivities of real chemical systems using quantum mechanics
(QM).

Though QM was born in the mid-1920s, it took many years before rigorous
solutions for molecular systems appeared. Hylleras2 and others3,4 developed nearly
exact solutions to the single-electron diatomic molecule in the 1930s and 1940s.
Reasonable solutions for multielectron multiatom molecules did not appear until
1960, with Kolos’5,6 computation of H2 and Boys’7 study of CH2. The watershed
year was perhaps 1970 with the publication by Bender and Schaefer8 on the bent
form of triplet CH2 (a topic of Chapter 5) and the release by Pople’s9 group of
Gaussian-70, which is the frst full-featured quantum chemistry computer package
that was to be used by a broad range of theorists and nontheorists alike. So, in this
sense, computational quantum chemistry is really only some fve decades old.

The application of QM to organic chemistry dates back to Hückel’s π-electron
model of the 1930s.10–12 Approximate quantummechanical treatments for organic
molecules continued throughout the 1950s and 1960s. Application of ab initio
approaches, such as Hartree–Fock theory, began in earnest in the 1970s and really
fourished in the mid-1980s, with the development of computer codes that allowed
for automated optimization of ground and transition states and incorporation of
electron correlation using confguration interaction or perturbation techniques.

In 2006, I began writing the frst edition of this book, acting on the notion that
the feld of computational organic chemistry was suffciently mature to deserve a
critical review of its successes and failures in treating organic chemistry problems.
The book was published the next year and met with a fne reception.

As I anticipated, immediately upon publication of the book, it was out of date.
Computational chemistry, like all science disciplines, is a constantly changing
feld. New studies are published, new theories are proposed, and old ideas
are replaced with new interpretations. I attempted to address the need for the
book to remain current in some manner by creating a complementary blog at
http://www.comporgchem.com/blog. The blog posts describe the results of new

xv
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papers and how these results touch on the themes presented in the monograph.
Besides providing an avenue for me to continue to keep my readers posted on
current developments, the blog allowed for feedback from the readers. On a few
occasions, a blog post and the article described engendered quite a conversation!

Encouraged by the success of the book, Jonathan Rose of Wiley approached me
about updating the book with a second edition. Drawing principally on the blog
posts, I had written since 2007, I knew that the ground work for writing an updated
version of the book had already been done. So I agreed, and what you have in
your hands is my perspective of the accomplishments of computational organic
chemistry through early 2013.

The structure of the book remains largely intact from the first edition, with a few
important modifcations. Throughout this book. I aim to demonstrate the major
impact that computational methods have had upon the current understanding of
organic chemistry. I present a survey of organic problems where computational
chemistry has played a signifcant role in developing new theories or where it pro-
vided important supporting evidence of experimentally derived insights. I expand
the scope to include computational enzymology to point interested readers toward
how the principles of QM applied to organic reactions can be extended to biolog-
ical system too. I also highlight some areas where computational methods have
exhibited serious weaknesses.

Any such survey must involve judicious selecting and editing of materials to
be presented and omitted. In order to reign in the scope of the book, I opted to
feature only computations performed at the ab initio level. (Note that I consider
density functional theory to be a member of this category.) This decision omits
some very important work, certainly from a historical perspective if nothing else,
performed using semiempirical methods. For example, Michael Dewar’s infuence
on the development of theoretical underpinnings of organic chemistry13 is certainly
underplayed in this book since results from MOPAC and its decedents are largely
not discussed. However, taking a view with an eye toward the future, the principle
advantage of the semiempirical methods over ab initiomethods is ever-diminishing.
Semiempirical calculations are much faster than ab initio calculations and allow
for much larger molecules to be treated. As computer hardware improves, as algo-
rithms become more effcient, ab initio computations become more practical for
ever-larger molecules, which is a trend that certainly has played out since the pub-
lication of the frst edition of this book.

The book is designed for a broad spectrum of users: practitioners of computa-
tional chemistry who are interested in gaining a broad survey or an entrée into a
new area of organic chemistry, synthetic and physical organic chemists who might
be interested in running some computations of their own and would like to learn
of success stories to emulate and pitfalls to avoid, and graduate students interested
in just what can be accomplished by computational approaches to real chemical
problems.

It is important to recognize that the reader does not have to be an expert in quan-
tum chemistry to make use of this book. A familiarity with the general principles of
quantum mechanics obtained in a typical undergraduate physical chemistry course
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will suffce. The frst chapter of this book introduces all of the major theoretical
concepts and defnitions along with the acronyms that so plague our discipline.
Suffcient mathematical rigor is presented to expose those who are interested to
some of the subtleties of the methodologies. This chapter is not intended to be
of suffcient detail for one to become expert in the theories. Rather it will allow
the reader to become comfortable with the language and terminology at a level
suffcient to understand the results of computations and understand the inherent
shortcoming associated with particular methods that may pose potential problems.
Upon completing Chapter 1, the reader should be able to follow with relative ease a
computational paper in any of the leading journals. Readers with an interest in delv-
ing further into the theories and their mathematics are referred to three outstanding
texts, Essential of Computational Chemistry by Cramer,14 Introduction to Compu-
tational Chemistry by Jensen,15 and Modern Quantum Chemistry: Introduction to
Advanced Electronic Structure Theory by Szabo and Ostlund.16 In a way, this book
serves as the applied accompaniment to these books.

How is the second edition different from the first edition? Chapter 1 presents an
overview of computational methods. In this second edition, I have combined the
descriptions of solvent computations and molecular dynamics computations into
this chapter. I have added a discussion of QM/molecular mechanics (MM) com-
putations and the topology of potential energy surfaces. The discussion of density
functional theory is more extensive, including discussion of double hybrids and
dispersion corrections. Chapter 2 of the second edition is mostly entirely new. It
includes case studies of computed spectra, especially computed NMR, used for
structure determination. This is an area that has truly exploded in the last few years,
with computed spectra becoming an important tool in the structural chemists’ arse-
nal. Chapter 3 discusses some fundamental concepts of organic chemistry; for the
concepts of bond dissociation energy, acidity, and aromaticity, I have included some
new examples, such as �-stacking of aromatic rings. I also added a section on iso-
merism, which exposes some major problems with families of density functionals,
including the most commonly used functional, B3LYP.

Chapter 4 presents pericyclic reactions. I have updated some of the examples
from the last edition, but the main change is the addition of bispericyclic reactions,
which is a topic that is important for the understanding of many of the examples of
dynamic effects presented in Chapter 8. Chapter 5 deals with radicals and carbenes.
This chapter contains one of the major additions to the book: a detailed presentation
of tunneling in carbenes. The understanding that tunneling is occurring in some
carbenes was made possible by quantum computations and this led directly to the
brand new concept of tunneling control.

The chemistry of anions is the topic of Chapter 6. This chapter is an update
from the material in the first edition, incorporating new examples, primarily in
the area of organocatalysis. Chapter 7, presenting solvent effects, is also updated
to include some new examples. The recognition of the role of dynamic effects,
situations where standard transition state theory fails, is a major triumph of compu-
tational organic chemistry. Chapter 8 extends the scope of reactions that are subject
to dynamic effects from that presented in the first edition. In addition, some new
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types of dynamic effects are discussed, including the roundabout pathway in an
SN2 reaction and the roaming mechanism.

A major addition to the second edition is Chapter 9, which discusses computa-
tional enzymology. This chapter extends the coverage of quantum chemistry to a
sister of organic chemistry—biochemistry. Since computational biochemistry truly
deserves its own entire book, this chapter presents a favor of how computational
quantum chemical techniques can be applied to biochemical systems. This chapter
presents a few examples of how QM/MM has been applied to understand the nature
of enzyme catalysis. This chapter concludes with a discussion of de novo design of
enzymes, which is a research area that is just becoming feasible, and one that will
surely continue to develop and excite a broad range of chemists for years to come.

Science is an inherently human endeavor, performed and consumed by humans.
To reinforce the human element, I interviewed a number of preeminent compu-
tational chemists. I distilled these interviews into short set pieces, wherein each
individual’s philosophy of science and history of their involvements in the projects
described in this book are put forth, largely in their own words. I interviewed six
scientists for the first edition—Professors Wes Borden, Chris Cramer, Ken Houk,
Henry “Fritz” Schaefer, Paul Schleyer, and Dan Singleton. I have reprinted these
interviews in this second edition. There was a decided USA-centric focus to these
interviews and so for the second edition, I have interviewed three European sci-
entists: Professors Stefan Grimme, Jonathan Goodman, and Peter Schreiner. I am
especially grateful to these nine people for their time they gave me and their gra-
cious support of this project. Each interview ran well over an hour and was truly a
fun experience for me! This group of nine scientists is only a small fraction of the
chemists who have been and are active participants within our discipline, and my
apologies in advance to all those whom I did not interview for this book.

A theme I probed in all of the interviews was the role of collaboration in devel-
oping new science. As I wrote this book, it became clear to me that many important
breakthroughs and signifcant scientifc advances occurred through collaboration,
particularly between a computational chemist and an experimental chemist. Col-
laboration is an underlying theme throughout the book, and perhaps signals the
major role that computational chemistry can play; in close interplay with exper-
iment, computations can draw out important insights, help interpret results, and
propose critical experiments to be carried out next.

I intend to continue to use the book’s ancillaryWeb site www.comporgchem.com
to deliver supporting information to the reader. Every cited article that is available
in some electronic form is listed along with the direct link to that article. Please
keep in mind that the reader will be responsible for gaining ultimate access to
the articles by open access, subscription, or other payment option. The citations
are listed on the Web site by chapter, in the same order they appear in the
book. Almost all molecular geometries displayed in the book were produced
using the GaussView17 molecular visualization tool. This required obtaining the
full three-dimensional structure, from the article, the supplementary material,
or through my reoptimization of that structure. These coordinates are made
available for reuse through the Web site. Furthermore, I intend to continue to
post (www.comporgchem.com/blog) updates to the book on the blog, especially
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focusing on new articles that touch on or complement the topics covered in this
book. I hope that readers will become a part of this community and not just
read the posts but also add their own comments, leading to what I hope will be
a useful and entertaining dialogue. I encourage you to voice your opinions and
comments. I wish to thank particular members of the computational chemistry
community who have commented on the blog posts; comments from Henry
Rzepa, Stephen Wheeler, Eugene Kwan, and Jan Jensen helped inform my
writing of this edition. I thank Jan for creating the Computational Chemistry
Highlights (http://www.compchemhighlights.org/) blog, which is an overlay of the
computational chemistry literature, and for incorporating my posts into this blog.
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CHAPTER 1

Quantum Mechanics for Organic
Chemistry

Computational chemistry, as explored in this book, will be restricted to quantum
mechanical descriptions of the molecules of interest. This should not be taken as a
slight upon alternate approaches. Rather, the aim of this book is to demonstrate the
power of high level quantum computations in offering insight toward understanding
the nature of organic molecules—their structures, properties, and reactions—and
to show their successes and point out the potential pitfalls. Furthermore, this book
will address the applications of traditional ab initio and density functional theory
(DFT) methods to organic chemistry, with little mention of semiempirical meth-
ods. Again, this is not to slight the very important contributions made from the
application of complete neglect of differential overlap (CNDO) and its progenitors.
However, with the ever-improving speed of computers and algorithms, ever-larger
molecules are amenable to ab initio treatment, making the semiempirical and other
approximate methods for treatment of the quantum mechanics (QM) of molecular
systems simply less necessary. This book is therefore designed to encourage the
broader use of the more exact treatments of the physics of organic molecules by
demonstrating the range of molecules and reactions already successfully treated
by quantum chemical computation. We will highlight some of the most important
contributions that this discipline has presented to the broader chemical community
toward understanding of organic chemistry.

We begin with a brief and mathematically light-handed treatment of the fun-
damentals of QM necessary to describe organic molecules. This presentation is
meant to acquaint those unfamiliar with the feld of computational chemistry with
a general understanding of the major methods, concepts, and acronyms. Suffcient
depth will be provided so that one can understand why certain methods work well
while others may fail when applied to various chemical problems, allowing the
casual reader to be able to understand most of any applied computational chem-
istry paper in the literature. Those seeking more depth and details, particularly
more derivations and a fuller mathematical treatment, should consult any of the

Computational Organic Chemistry, Second Edition. Steven M. Bachrach
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.

1



2 QUANTUM MECHANICS FOR ORGANIC CHEMISTRY

three outstanding texts: Essentials of Computational Chemistry by Cramer,1 Intro-
duction to Computational Chemistry by Jensen,2 andModern Quantum Chemistry:
Introduction to Advanced Electronic Structure Theory by Szabo and Ostlund.3

Quantum chemistry requires the solution of the time-independent Schrödinger
equation,

ĤΨ(R1,R2 … RN , r1, r2 … rn) = EΨ(R1,R2 … RN , r1, r2 … rn) (1.1)

where Ĥ is the Hamiltonian operator, Ψ(R1,R2 … RN , r1, r2 … rn) is the wave-
function for all of the nuclei and electrons, and E is the energy associated with this
wavefunction. The Hamiltonian contains all the operators that describe the kinetic
and potential energies of the molecule at hand. The wavefunction is a function of
the nuclear positionsR and the electron positions r. For molecular systems of inter-
est to organic chemists, the Schrödinger equation cannot be solved exactly and so
a number of approximations are required to make the mathematics tractable.

1.1 APPROXIMATIONS TO THE SCHRÖDINGER EQUATION—THE

HARTREE–FOCK METHOD

1.1.1 Nonrelativistic Mechanics

Dirac4 achieved the combination of QM and relativity. Relativistic corrections are
necessary when particles approach the speed of light. Electrons near heavy nuclei
will achieve such velocities, and for these atoms, relativistic quantum treatments
are necessary for accurate description of the electron density. However, for typical
organic molecules, which contain only frst- and second-row elements, a relativistic
treatment is unnecessary. Solving the Dirac relativistic equation is much more dif-
fcult than for nonrelativistic computations. A common approximation is to utilize
an effective feld for the nuclei associated with heavy atoms, which corrects for the
relativistic effect. This approximation is beyond the scope of this book, especially
since it is unnecessary for the vast majority of organic chemistry.

The complete nonrelativistic Hamiltonian for a molecule consisting of n elec-
trons and N nuclei is

Ĥ = −h
2

2

N∑
I

∇2
I

mI
− h2

2me

n∑
i

∇2
i −

N∑
I

n∑
i

ZIe
′2

rIi
+

N∑
I<J

ZIZJe
′2

rIJ
+

n∑
i

e′2

rij
(1.2)

where the lowercase letter indexes the electrons and the uppercase one indexes the
nuclei, h is the Planck’s constant, me is the electron mass, mI is the mass of nucleus
I, and r is the distance between the objects specifed by the subscript. For simplicity,
we defne

e′2 = e2

4π�0
(1.3)
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1.1.2 The Born–Oppenheimer Approximation

The total molecular wavefunctionΨ(R,r) depends on both the positions of all of the
nuclei and the positions of all of the electrons. Since electrons are much lighter than
nuclei, and therefore move much more rapidly, electrons can essentially instanta-
neously respond to any changes in the relative positions of the nuclei. This allows
for the separation of the nuclear variables from the electron variables,

Ψ(R1,R2 … RN , r1, r2 … rn) = Φ(R1,R2 … RN)�(r1, r2 … rn) (1.4)

This separation of the total wavefunction into an electronic wavefunction �(r) and
a nuclear wavefunction Φ(R) means that the positions of the nuclei can be fxed,
leaving it only necessary to solve for the electronic part. This approximation was
proposed by Born and Oppenheimer5 and is valid for the vast majority of organic
molecules.

The potential energy surface (PES) is created by determining the electronic
energy of a molecule while varying the positions of its nuclei. It is impor-
tant to recognize that the concept of the PES relies upon the validity of the
Born–Oppenheimer approximation so that we can talk about transition states and
local minima, which are critical points on the PES. Without it, we would have to
resort to discussions of probability densities of the nuclear–electron wavefunction.

The Hamiltonian obtained after applying the Born–Oppenheimer approxima-
tion and neglecting relativity is

Ĥ = −1

2

n∑
i

∇2
i −

N∑
I

n∑
i

ZI
rIi

+
n∑
i<j

1

rij
+ Vnuc (1.5)

where Vnuc is the nuclear–nuclear repulsion energy. Eq. (1.5) is expressed in atomic
units, which is why it appears so uncluttered. It is this Hamiltonian that is uti-
lized in computational organic chemistry. The next task is to solve the Schrödinger
equation (1.1) with the Hamiltonian expressed in Eq. (1.5).

1.1.3 The One-Electron Wavefunction and the Hartree–Fock Method

The wavefunction �(r) depends on the coordinates of all of the electrons in the
molecule. Hartree6 proposed the idea, reminiscent of the separation of variables
used by Born and Oppenheimer, that the electronic wavefunction can be separated
into a product of functions that depend only on one electron,

�(r1, r2 … rn) = �1(r1)�2(r2) … �n(rn) (1.6)

This wavefunction would solve the Schrödinger equation exactly if it weren’t
for the electron–electron repulsion term of the Hamiltonian in Eq. (1.5). Hartree
next rewrote this term as an expression that describes the repulsion an electron
feels from the average position of the other electrons. In other words, the exact
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electron–electron repulsion is replaced with an effective feld Veff
i produced by the

average positions of the remaining electrons. With this assumption, the separable
functions �i satisfy the Hartree equations(

−1

2
∇2
i −

N∑
I

ZI
rIi

+ Veff
i

)
�i = Ei�i (1.7)

(Note that Eq. (1.7) defnes a set of equations, one for each electron.) Solving for the
set of functions�i is nontrivial because V

eff
i itself depends on all of the functions�i.

An iterative scheme is needed to solve the Hartree equations. First, a set of functions
(�1, �2, … , �n) is assumed. These are used to produce the set of effective potential
operators Veff

i , and the Hartree equations are solved to produce a set of improved
functions �i. These new functions produce an updated effective potential, which in
turn yields a new set of functions �i. This process is continued until the functions
�i no longer change, resulting in a self-consistent feld (SCF).

Replacing the full electron–electron repulsion term in the Hamiltonian with
Veff
i is a serious approximation. It neglects entirely the ability of the electrons to

rapidly (essentially instantaneously) respond to the position of other electrons. In a
later section, we address how one accounts for this instantaneous electron–electron
repulsion.

Fock7,8 recognized that the separable wavefunction employed by Hartree
(Eq. (1.6)) does not satisfy the Pauli exclusion principle.9 Instead, Fock suggested
using the Slater determinant

�(r1, r2 … rn) =
1√
n!

||||||||
�1(e1) �2(e1) … �n(e1)
�1(e2) �2(e2) … �n(e2)

⋮
�1(en)

⋮
�2(en) …

⋮
�n(en)

|||||||| = |�1�2 … �n| (1.8)

which is antisymmetric and satisfes the Pauli exclusion principle. Again, an effec-
tive potential is employed, and an iterative scheme provides the solution to the
Hartree–Fock (HF) equations.

1.1.4 Linear Combination of Atomic Orbitals (LCAO) Approximation

The solutions to the HF model, �i, are known as the molecular orbitals (MOs).
These orbitals generally span the entire molecule, just as the atomic orbitals (AOs)
span the space about an atom. Since organic chemists consider the atomic properties
of atoms (or collection of atoms as functional groups) to persist to some extent
when embedded within a molecule, it seems reasonable to construct the MOs as an
expansion of the AOs,

�i =
k∑
�

ci��� (1.9)
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where the index � spans all of the AOs � of every atom in the molecule (a total of
k AOs), and ci� is the expansion coeffcient of AO �� in MO �i. Eq. (1.9) defnes
the linear combination of atomic orbital (LCAO) approximation.

1.1.5 Hartree–Fock–Roothaan Procedure

Combining the LCAO approximation for the MOs with the HF method led
Roothaan10 to develop a procedure to obtain the SCF solutions. We will discuss
here only the simplest case where all MOs are doubly occupied with one
electron that is spin up and one that is spin down, also known as a closed-shell
wavefunction. The open-shell case is a simple extension of these ideas. The
procedure rests upon transforming the set of equations listed in Eq. (1.7) into
matrix form

FC = SCe (1.10)

where S is the overlap matrix, C is the k× k matrix of the coeffcients ci�, and � is
the k× k matrix of the orbital energies. Each column of C is the expansion of �i in
terms of the AOs ��. The Fock matrix F is defned for the �� element as

F�� =
⟨
�|ĥ|�⟩ +

n∕2∑
n

[(jj|��) − (j�|j�)] (1.11)

where ĥ is the core-Hamiltonian, corresponding to the kinetic energy of the electron
and the potential energy due to the electron–nuclear attraction, and the last two
terms describe the Coulomb and exchange energies, respectively. It is also useful
to defne the density matrix (more properly, the frst-order reduced density matrix)

D�� = 2

n∕2∑
i

c∗i�ci� (1.12)

The expression in Eq. (1.12) is for a closed-shell wavefunction, but it can be
defned for a more general wavefunction by analogy.

The matrix approach is advantageous because a simple algorithm can be estab-
lished for solving Eq. (1.10). First, a matrix X is found which transforms the nor-
malized AOs �� into the orthonormal set � ′

�

� ′
� =

k∑
�

X�� (1.13)

which is mathematically equivalent to

X†SX = 1 (1.14)
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whereX† is the adjoint of thematrixX. The coeffcient matrixC can be transformed
into a new matrix C′

C′ = X−1C (1.15)

Substituting C = XC′ into Eq. (1.10) and multiplying by X† gives

X†FXC′ = X†SXC′e = C′e (1.16)

By defning the transformed Fock matrix

F′ = X†FX (1.17)

we obtain the Roothaan expression

F′C′ = C′e (1.18)

The Hartree–Fock–Roothaan algorithm is implemented by the following steps.

(1) Specify the nuclear position, the type of nuclei, and the number of electrons.

(2) Choose a basis set. The basis set is the mathematical description of the AOs.
Basis sets are described in Section 1.1.8.

(3) Calculate all of the integrals necessary to describe the core Hamiltonian, the
Coulomb and exchange terms, and the overlap matrix.

(4) Diagonalize the overlap matrix S to obtain the transformation matrix X.
(5) Make a guess at the coeffcient matrix C and obtain the density matrix D.
(6) Calculate the Fock matrix and then the transformed Fock matrix F′.

(7) Diagonalize F′ to obtain C′ and �.

(8) Obtain the new coeffcient matrix with the expression C=XC′ and the corre-
sponding new density matrix.

(9) Decide if the procedure has converged. There are typically two criteria for
convergence, one based on the energy and the other on the orbital coeffcients.
The energy convergence criterion is met when the difference in the energies
of the last two iterations is less than some pre-set value. Convergence of the
coeffcients is obtained when the standard deviation of the density matrix ele-
ments in successive iterations is also below some pre-set value. If convergence
has not been met, return to step 6 and repeat until the convergence criteria are
satisfed.

One last point concerns the nature of the MOs that are produced in this proce-
dure. These orbitals are such that the energy matrix � will be diagonal, with the
diagonal elements being interpreted as the MO energy. These MOs are referred to
as the canonical orbitals. One must be aware that all that makes them unique is
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that these orbitals will produce the diagonal matrix �. Any new set of orbitals �i
′

produced from the canonical set by a unitary transformation

�′
i =

n∑
j

Uji�i (1.19)

will satisfy the HF equations and give the exact same energy and electron distri-
bution as that with the canonical set. No one set of orbitals is really any better or
worse than another, as long as the set of MOs satisfes Eq. (1.19).

1.1.6 Restricted Versus Unrestricted Wavefunctions

The preceding development of the HF theory assumed a closed-shell wavefunction.
The wavefunction for an individual electron describes its spatial extent along with
its spin. The electron can be either spin up (α) or spin down (β). For the closed-shell
wavefunction, each pair of electrons shares the same spatial orbital but each has a
different spin—one is up and the other is down. This type of wavefunction is also
called a (spin)-restricted wavefunction since the paired electrons are restricted to
the same spatial orbital, leading to the restricted Hartree–Fock (RHF) method.

This restriction is not demanded. It is a simple way to satisfy the Pauli exclusion
principle,9 but it is not the only means for doing so. In an unrestricted wavefunc-
tion, the spin-up electron and its spin-down partner do not have the same spatial
description. The Hartree–Fock–Roothaan procedure is slightly modifed to handle
this case by creating a set of equations for the α electrons and another set for the β
electrons, and then an algorithm similar to that described above is implemented.

The downside to the (spin)-unrestricted Hartree–Fock (UHF) method is that the

unrestricted wavefunction usually will not be an eigenfunction of the Ŝ2 operator.
Since the Hamiltonian and Ŝ2 operators commute, the true wavefunction must be an
eigenfunction of both of these operators. The UHF wavefunction is typically con-
taminated with higher spin states; for singlet states, the most important contaminant
is the triplet state. A procedure called spin projection can be used to remove much
of this contamination. However, geometry optimization is diffcult to perform with
spin projection. Therefore, great care is needed when an unrestricted wavefunction
is utilized, as it must be when the molecule of interest is inherently open shell, like
in radicals.

1.1.7 The Variational Principle

The variational principle asserts that any wavefunction constructed as a linear com-
bination of orthonormal functions will have its energy greater than or equal to the
lowest energy (E0) of the system. Thus,⟨

Φ|Ĥ|Φ⟩
⟨Φ|Φ⟩ ≥ E0 (1.20)
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if

Φ =
∑
i

ci�i (1.21)

If the set of functions �� is infnite, then the wavefunction will produce the
lowest energy for that particular Hamiltonian. Unfortunately, expanding a wave-
function using an infnite set of functions is impractical. The variational principle
saves the day by providing a simple way to judge the quality of various truncated
expansions—the lower the energy, the better the wavefunction! The variational
principle is not an approximation to treatment of the Schrödinger equation; rather,
it provides ameans for judging the effect of certain types of approximate treatments.

1.1.8 Basis Sets

In order to solve for the energy and wavefunction within the Hartree–Fock–
Roothaan procedure, the AOs must be specifed. If the set of AOs is infnite, then
the variational principle tells us that we will obtain the lowest possible energy
within the HF–SCF method. This is called the HF limit, EHF. This is not the
actual energy of the molecule; recall that the HF method neglects instantaneous
electron–electron interactions, otherwise known as electron correlation.

Since an infnite set of AOs is impractical, a choice must be made on how to
truncate the expansion. This choice of AOs defnes the basis set.

A natural starting point is to use functions from the exact solution of the
Schrödinger equation for the hydrogen atom. These orbitals have the form

c = Nxiyjzke−z(r−R) (1.22)

where R is the position vector of the nucleus upon which the function is centered
and N is the normalization constant. Functions of this type are called Slater-type
orbitals (STOs). The value of � for every STO for a given element is determined
by minimizing the atomic energy with respect to � . These values are used for every
atom of that element, regardless of the molecular environment.

At this point, it is worth shifting nomenclature and discussing the expansion in
terms of basis functions instead of AOs. The construction of MOs in terms of some
set of functions is entirely a mathematical “trick,” and we choose to place these
functions at a nucleus since that is the region of greatest electron density. We are
not using “AOs” in the sense of a solution to the atomic Schrödinger equation, but
just mathematical functions placed at nuclei for convenience. To make this more
explicit, we will refer to the expansion of basis functions to form the MOs.

Conceptually, the STO basis is straightforward as it mimics the exact solution
for the single electron atom. The exact orbitals for carbon, for example, are not
hydrogenic orbitals, but are similar to the hydrogenic orbitals. Unfortunately, with
STOs, many of the integrals that need to be evaluated to construct the Fock matrix
can only be solved using an infnite series. Truncation of this infnite series results
in errors, which can be signifcant.
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Following on a suggestion of Boys,11 Pople decided to use a combination of
Gaussian functions to mimic the STO. The advantage of the Gaussian-type orbital
(GTO),

� = Nxiyjzke−�(r−R)
2

(1.23)

is that with these functions, the integrals required to build the Fock matrix can be
evaluated exactly. The trade-off is that GTOs do differ in shape from the STOs,
particularly at the nucleus where the STO has a cusp while the GTO is continually
differentiable (Figure 1.1). Therefore, multiple GTOs are necessary to adequately
mimic each STO, increasing the computational size. Nonetheless, basis sets com-
prising GTOs are the ones that are most commonly used.

A number of factors defne the basis set for a quantum chemical computation.
First, how many basis functions should be used? The minimum basis set has one
basis function for every formally occupied or partially occupied orbital in the
atom. So, for example, the minimum basis set for carbon, with electron occupation
1s22s22p2, has two s-type functions and px, py, and pz functions, for a total of fve
basis functions. This minimum basis set is referred to as a single zeta (SZ) basis
set. The use of the term zeta here refects that each basis function mimics a single
STO, which is defned by its exponent, � .

The minimum basis set is usually inadequate, failing to allow the core electrons
to get close enough to the nucleus and the valence electrons to delocalize. An obvi-
ous solution is to double the size of the basis set, creating a double zeta (DZ) basis.
So for carbon, the DZ basis set has four s basis functions and two p basis functions
(recognizing that the term p basis functions refers here to the full set—px, py, and
pz functions), for a total of 10 basis functions. Further improvement can be made
by choosing a triple zeta (TZ) or even larger basis set.

Since most of chemistry focuses on the action of the valence electrons,
Pople12,13 developed the split-valence basis sets, SZ in the core and DZ in the
valence region. A double-zeta split-valence basis set for carbon has three s basis
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Figure 1.1 Plot of the radial component of Slater-type and Gaussian-type orbitals.




